Package: stepPenal 0.2

stepPenal: Stepwise Forward Variable Selection in Penalized Regression

Model Selection Based on Combined Penalties. This package implements a stepwise forward variable selection algorithm based on a penalized likelihood criterion that combines the L0 with L2 or L1 norms.

Authors:Eleni Vradi

stepPenal_0.2.tar.gz
stepPenal_0.2.zip(r-4.5)stepPenal_0.2.zip(r-4.4)stepPenal_0.2.zip(r-4.3)
stepPenal_0.2.tgz(r-4.4-any)stepPenal_0.2.tgz(r-4.3-any)
stepPenal_0.2.tar.gz(r-4.5-noble)stepPenal_0.2.tar.gz(r-4.4-noble)
stepPenal_0.2.tgz(r-4.4-emscripten)stepPenal_0.2.tgz(r-4.3-emscripten)
stepPenal.pdf |stepPenal.html
stepPenal/json (API)

# Install 'stepPenal' in R:
install.packages('stepPenal', repos = c('https://veleni.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.04 score 11 scripts 100 downloads 12 exports 79 dependencies

Last updated 6 years agofrom:7cc542f036. Checks:OK: 3 NOTE: 4. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 17 2024
R-4.5-winNOTEOct 17 2024
R-4.5-linuxNOTEOct 17 2024
R-4.4-winNOTEOct 17 2024
R-4.4-macNOTEOct 17 2024
R-4.3-winOKOct 17 2024
R-4.3-macOKOct 17 2024

Exports:findROClassomodelobjFunoptimPenaLikoptimPenaLikL2penalBrierSimDatastepaicStepPenalStepPenalL2tuneParamtuneParamCL2

Dependencies:caretclasscliclockcodetoolscolorspacecpp11data.tabledfoptimdiagramdigestdplyre1071fansifarverforeachfuturefuture.applygenericsggplot2glmnetglobalsgluegowergtablehardhatipredisobanditeratorsKernSmoothlabelinglatticelavalifecyclelistenvlubridatemagrittrMASSMatrixmgcvModelMetricsmunsellmvtnormnlmennetnumDerivparallellypillarpkgconfigplyrpROCprodlimprogressrproxypurrrR6RColorBrewerRcppRcppEigenrecipesreshape2rlangrpartscalesshapeSQUAREMstringistringrsurvivaltibbletidyrtidyselecttimechangetimeDatetzdbutf8vctrsviridisLitewithr